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This pape r  deals  with the asympto t ic  behavior  of the spec t r a l  function when the wave num-  
ber  i n c r e a s e s  infinitely.  The feas ib i l i ty  of using the r e su l t s  of this ana lys is  in a study of 
the final t ime  per iod  during which a turbulence degenera tes  is a lso  d iscussed.  

1. Severa l  r e p o r t s  have dealt  with the asympto t ic  behavior  of the turbulence spec t rum when k--* % 
where  k is  the wave number .  The behavior  of f ine - sca le  eddy per tu rba t ions  in a ve loci ty  field which is  
l inear  within d is tances  of the o rde r  of the v i scos i ty  sca le  U ~ ( v3 /~ ) l / 4 ,  where v is  the k inemat ic  v i scos i ty  
and s is  the mean  ra te  of energy  dissipat ion,  has been cons idered  in [1]. The spec t rum 

U (k) -~ exp (-- ck ~) (c = const) (i.i) 

was obtained under  the assumpt ion  that f ine - sca le  eddies do not i n t e rac t  but r ece ive  the i r  energy  d i rec t ly  
f r o m  the pe r tu rba t ions  of the o rder  of 7- 

This approach  has been fur ther  developed in [2, 3, 4]. The fo rm of the spec t rum at k--* ~ was ana -  
lyzed in [5] with the assumption that direct interactions do play the main role. The results obtained here 
differ from (I.i): 

U (k) ~ (~Ik) ~ exp (--ok) (1.2) 

Applying the hypotheses  about a spec t r a l  t r a n s f e r  of energy,  one obtains expres s ions  for  the spec -  
t r u m  [6, 7] which in some cases  agree  with e i ther  (1.1) or (1.2). 

In the range  of high wave number s  the turbulence is  a lways a lmos t  homogeneous and i so t rop ic  and, 
the re fore ,  for  analyzing the s pec t rum  fo rm one m a y  use the ~diagrammat ic  technique" developed by Wyld 
in [8]. As is  well  known, the essen t i a l  difficulty with the turbulence theory  a r i s e s  due to the fact  that  the 
s y s t e m  of equations for  the momen t s  is  not c losed.  With the d i ag rammat i c  technique it  becomes  poss ib le  
to e x p r e s s  the h i g h e r - o r d e r  m om en t s  in t e r m s  of th ree  functions: the genera l ized  p ropaga to r ,  the ver tex ,  
and the spec t r a l  function [8]. As a resu l t ,  one obtains a s y s t e m  of equations in t e r m s  of these  functions,  
but a new difficulty a r i s e s  in that  the r igh t -hand  sides of these  equations appear  as infinite s e r i e s .  The 
Kraichnan approximat ion  [5] i s  equivalent  to re ta ining only the f i r s t  t e r m s  of these s e r i e s  on the r igh t -  
hand s ides  of the equations [8]. 

The s p e c t r u m  within the iner t i a  range  differs  f rom that der ived by A. N. Kolmogorov [6] and, t h e r e -  
fore ,  i t  becomes  n e c e s s a r y  to analyze the effect  of subsequent  t e r m s  in those s e r i e s .  

I t  will be a s s u m e d  he re  that the s e r i e s  a r e  convergent  in the range  of high wave number s  and that, 
the re fo re ,  one need cons ider  only an a r b i t r a r i l y  la rge  but finite number  of s e r i e s  t e r m s .  

2. F o r  s impl ic i ty ,  as was done in [8], we will s t a r t  with the model  equation: 

o)) + g I v (q, a) v (k - -  q, o J -  ~r dq do; (2.1) ( -  to) + 'V]g 2) (k, U (0) / (k, 
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w h e r e f ( k ,  w) is  an externa l  force  and g is  the in-  
te rac t ion  constant.  It  will be shown in Sec. 5 that 
all  subsequent  calculat ions r ema in  val id a lso  if  one 
s t a r t s  with the Navie r -S tokes  equation. As a con-  
venience for  the ana lys i s  which follows, we will 
somewhat  modify the graphic  symbols  used in [8]. 

The p ropaga to r  S (k, cv) will be r e f e r r e d  to by 
an a r r o w  (Fig. la) .  The quantity S ( -k ,  - w )  will be 
r e f e r r e d  to by an a r r o w  p o i n l ~ g  backward (Fig. lb).  
We now cons ider  the quantity 

S (k, o) ~ l f (k, o) t~) S (-- k, -- o~) 

The symbol  < > signifies ave rag ing  over  the en t i re  set.  This quanti ty will be r e f e r r e d  to by a dashed 
In accordance  with what has  been said so far ,  one mus t  ass ign opposite d i rec t ions  to the endpoints of 

this line (Fig. lc) .  The ve r t ex  designations will be the s ame  as  in [8]. The ex te rna l  f o r c e f ( k ,  r will be 
r e p r e s e n t e d  by a smal l  square .  

Function v (k, w) can be e x p r e s s e d  as  a s e r i e s  expansion in t e r m s  of the per turba t ion  force  [8]. 

This is  shown by graphic  symbols  in Fig. 2. One may  analogously r ewr i t e  other  s e r i e s  r ep resen t ing  
the genera l ized  propaga tor ,  which will he re  be r e f e r r e d  to by a heavy a r r o w  (Fig. 3), the spec t ra l  function, 
and the ve r t i c e s .  

I t  i s  e a s y  to see  that  the spec t ra l  function can be defined as  the sum of all poss ib le  graphs  cons t ruc ted  
f r o m  the e lements  of Fig. i and having two exits .  

We will now cons ider  the h i g h e s t - o r d e r  momen t  

(v (klcoa) v (k~r . . .  v (1~o~)) 

In o rde r  to r e p r e s e n t  i t  graphical ly,  one mus t  exp re s s  here  v(ki ,  r i) ( i=1,  2 , . . .  ,n) in the fo rm of 
Fig. 2. As a resu l t ,  one obtains then the sum of all  poss ib le  graphs  compr i s ing  the e lements  of Fig. 1 and 
having exits .  The n- th  o rde r  m om en t  will be r e p r e s e n t e d  graphica l ly  by a shaded c i r c l e  with n exi ts  
(Fig. 4a). The s e c o n d - o r d e r  moment ,  i .e . ,  the spec t ra l  function, will be r e f e r r e d  to by a heavy dashed 
line (Fig. 4b). By vi r tue  of the homogenei ty  and s t eady- s t a t e  conditions of turbulence,  the impulses  and 
the f requencies  of the external  l ines a r e  r e spec t ive ly  cons t ra ined  by one condition, 

kl + k2 + . . .  + k~ = 0, r + o~2 + . . .  ~ = 0 (2.2)  

We will va r ia t iona l ly  different ia te  the s e r i e s  of Fig. 2 t e r m - b y - t e r m  with r e s p e c t  to the external  
force  and then ave rage  the resu l t  (for a definition of the var ia t iona l  de r iva t ives  see ,  e.g. ,  [6]). We obtain 
thus the sum of all  poss ib le  g raphs  compr i s ing  the e lements  of Fig. 1 with one ent rance  and one exit.  It  i s  
e a s y  to see that  this  is how to de te rmine  the genera l ized  p ropaga to r  S' (k, w). Function S' (k, w) de-  
sc r ibes  the r e sponse  to an inf ini tes imal  per tu rba t ion  in the externa l  force .  

I f  F (k, w) denotes an inf in i tes imal  nonrandom inc remen t  to the externa l  force  field, then the averaged  
r e sponse  u (k, w) can be e x p r e s s e d  in the l inear  approximat ion as 

u(k, c o ) =  S'(k, oJ) F (k,o)) (2 .3)  

Kraichnan in [5] a r r i v e d  at the s ame  resu l t  f rom different  cons idera t ions .  

One can s ta te  m o r e  general ly:  to the sum of all  poss ib le  g raphs  with m en t rances  and n exits t he re  
co r responds  the m - p l e  var ia t iona l  der iva t ive  of the n- th  point momen t  of the veloci ty  field. Such a quan- 
t i ty  will be r ep re sen t ed  graphica l ly  by a shaded rec tangle  with m ent rance  l ines and n exit  l ines (Fig. 4b). 
At eve ry  ve r t ex  there  converge  th ree  lines: two of them enter  and one exi ts  while the impulse  and the f r e -  
quency a re  maintained.  The sum of impu l ses  of the enter ing l ines is  equal to the impulse  of the exiting 
line. The s ame  appl ies  to the f requencies .  F r o m  this follows the re la t ion for  any graph with m enter ing 
l ines and n exiting lines. 

If  Ki, co i a re  the impulses  and the f requencies  of exit ing l ines andpj___, a j  a re  those  of enter ing l ines,  then 

kt + k~ -}- . . .  + k,~ = p~ + p~ + . .  ~ + Pm (2.4)  

co 1 + c % +  . . . .  ~ + r  + a m  (2.5)  
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Fig. 3 

a b c If  the graph is  connected, then i ts  ex terna l  impu l ses  and f requencies  
a r e  r e spec t i ve ly  cons t ra ined  by only one condition of the (2.4), (2.5) kind. 

This p r o p e r t y  helps to p rove  the s ta tement  that  the impulses  and the 
f requencies  of some number  of l ines a r e  i n t e r r e l a t ed  if  and only if  upon cut-  

Fig. 4 ring these  l ines the graph will spli t  into two or  m o r e  pa r t s .  

Indeed, the conservat ion  of impulse  and f requency at  e v e r y  ve r t ex  be-  
come the only r e s t r i c t ion  on the impulses  and the f requencies  of the in ternal  

l ines.  There fo re ,  the re la t ion of the (2.4), (2.5) kind is  the only poss ib le  one. We will a s s u m e  that  the 
impulses  and the f requencies  of a cer ta in  number  of l ines a re  re la ted  as p e r  (2.4), (2.5) but that  the graph 
does not fall apa r t  when these  l ines a r e  cut. One can then stil l  pick some number  of l ines so that the graph 
should spli t  into two connected pa r t s .  But now two conditions of the (2.4), (2.5) kind can be imposed  on both 
the impulses  and the f requencies  of each pa r t  and, consequently,  we have a r r i v e d  at a contradict ion.  

3. We will now analyze the relat ion in Fig. 3. In each graph on the r ight -hand side there  is  a solid 
line pass ing  through the ent i re  graph.  We f i r s t  sum up all  the graphs  in which this line is connected to the 
remain ing  p a r t  of the graph through two l ines,  then we sum up those where  there  a r e  th ree  connect ingl ines ,  
etc.  The re su l t  of this summat ion  is  shown in Fig. 5. 

To the shaded c i r c l e  with exi ts  t he re  co r r e sponds  a point moment  of the ve loc i ty  field. I f  i t  is de s -  
ignated by U(ql, ~1, q2, ~2, �9 - . ,  qn-1, an- i ) ,  then the re la t ion  in Fig. 5 can be rewr i t t en  in the analyt ical  
fo rm 

oo 

S' (k, co) : 3 (k, co) ~- S (k, r ~, (2g) ~ S U (qlal... qn_la~_l) 3 (k~-ql, co+~) 

•  ( k + q l + q ~ , c o + a l + a ~ )  5 ' ( k + q l + . . . % _ l ,  c o + ~ l + . . . + a ~ , _ ~ )  
d q l d a i  ' �9 " d q ~ - i d ~ n - i  (3.1) 

Let  us cons ider  the asympto t ic  behavior  of S' (k__~, r at  k ~  co. We denote the cutoff impulse  by k ~ and 
the cutoff f requency  by w ~ beyond which the spec t ra l  function U (k, w) d e c r e a s e s  fas t  (e.g., exponentially).  
If  the Reynolds num ber  is  suff iciently high, then k ~ and w ~ can be e x p r e s s e d  in the v i scos i ty  sca le  by 

k ~ N ~l-i, coo ~ ~-2 

I t  i s  fu r the r  a s s um ed  that all  functions U ( q l ~ l . . .  qn_l~n_l) a re  outside the region [ q i l ~  k ~ [ ~i[ ~ ' ~ ~  
(i = 1, 2 , . . . ,  n - 1 )  so that integrat ion can be p e r f o r m e d  only the region where  the in tegrat ion va r i ab l e s  a r e  
bounded. 

In this region the in tegrand functions 

S (k ~- qi ~- ... ~- qs, co~- al ~- . . .  -~as) (~= 1.2 . . . . .  n-- t )  

m a y  be expanded with r e s pec t  to the smal l  p a r a m e t e r s  q i / k ,  ~ i /~k  2 and one need cons ider  only the f i r s t  
t e r m  S (k, w). 

After  that,  al l  S (k, w) fac tors  can be taken out in front  of the in tegra l  sign and in tegra t ion m a y  be 
extended to infinity. 

Using the inve r se  F o u r i e r  t r a n s f o r m ,  i t  is  e a s y  to show that  the in tegra l s  a r e  propor t iona l  to the 
quanti t ies ( Iv  (x,t)]n), i .e . ,  to the s ingle-point  momen t s  in the s p a c e - t i m e  represen ta t ion .  

In the case  of homogeneous and i so t rop ic  turbulence,  the values  of ([v (x, t)] n) will be bounded by 
constants .  Relat ion (3.1) will then become 

S' (k, co) = S (k, co) {1 ~- Z [2 (2n) ' g S  (k, co) ]'~ < [ v (x, t)l~>} (3.2) 
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Fig. 7 

S' (k, o)) = S (k, ~o) ~- S (k, co) Y x (k, ~) S' (k, ~o) 

(the function Z l ( k  , o~) i s  defined in [8]), we can r ewr i t e  re lat ion (2.3) as  follows: 

( - -  io~ d - v k  ~) u (k ,  r = Zi(k ,  co)u(k, co) d - F ( k ,  ~o) 

Fig. 6 

As k -*  ~, the p ropaga to r  S (k, w) ~ 1/vk z and, the re fo re ,  

S' (k, ~) ~ S (k, to) (3.3) 

When ~--* % then analogous calculat ions a lso  lead to the re la t ion  (3.2) in 
the fo rm of an expansion with r e spec t  to the sma l l  p a r a m e t e r  ~ 1/w and we again 
have the equal i ty (3.3). 

We will explain the physica l  meaning of express ion  (3.3). Using the Dayson 
equation [8] 

(3.4) 

(3.5) 

Relation (3.5) has the fo rm of a l inear ized  Eq. (2.1) with the additional t e r m  Zl (k ,  w) u(k, w) which 
desc r ibes  the effect  of turbulent  v iscos i ty .  Dis regard ing  the l a t t e r  will again, accord ing  to (3.4), lead to 
the equali ty (3.3). In this way, turbulent  pulsat ions have no effect  on the buildup of pe r tu rba t ions  with wave 
number s  k>> k ~ or at f requencies  w >> w ~ 

We will next  analyze the behavior  of the ve r t ex  function [8]: 

F (k, (o, k', o)') 

when the impu l ses  or  the f requencies  of any externa l  l ines a r e  l a rge .  

If  both the impu l ses  or  the f requencies  of all  ex te rna l  l ines a r e  large ,  then by reason ing  as  before 
we will a r r i v e  at  the following relat ion: 

F ' (3.6) (k, c0, k ,  ~o') ~ g 

I f  both the impulse  and the f requency of any enter ing line, such as k '  and w',  a r e  smal l  but not equal to 
zero,  however ,  then (3.6) r e m a i n s  val id if  the additional condition that  the var ia t iona l  de r iva t ives  be finite 

8 ~ [ v (x, t) ]n)/S/(k', 0)') d k ' d o '  

is  a lso  stipulated.  

The f in i teness  of var ia t ional  de r iva t ives  means  s imply  that the spec t rum i s  stable,  within the l inear  
approximat ion,  with r e s pec t  to pe r tu rba t ions  having the wave number  k '  and the f requency w'. 

4. The equation for  the spec t ra l  function U (k, w) [8] is  shown in Fig. 6. We will a s s u m e  that  the 
s e r i e s  on the r ight -hand side of Fig. 6 i s  convergent  so that  for  analyzing the asympto t ic  behavior  of the 
spec t ra l  function one need cons ider  a finite number  of t e r m s  only. 

The complexi ty  of the graphs  is based on the following rule:  as one dashed line is  added, one in te -  
grat ion as  well as two v e r t i c e s  and two solid l ines a re  a lso  added. The number  of dashed l ines a lways 
exceeds  the num ber  of in tegra t ions  by one and, the re fore ,  a re la t ion mus t  n e c e s s a r i l y  exis t  between the 
impu l ses  and between the f requencies  of some number  of dashed l ines.  

In o rde r  to explain this ,  we note that  i t  i s  poss ib le  by a single cut to spli t  each graph,  except  t h e f i r s t  
one, on the r ight -hand side of Eq. (Fig. 6) into two pa r t s  with a break in the dashed l ines only. The e x t e r -  
nal l ines of such a graph  will then fall  into different  pa r t s .  All dashed l ines which a r e  thus cut will be 
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grouped into Class  A and all  the other  dashed l ines into Class  B. By v i r tue  of (2.4), (2.5), the impu l ses  
and the f requencies  of Class  A l ines a r e  r e spec t i ve ly  cons t ra ined  by one condition: 

ql-~ q~-~ . . .  -~qz ----k, ~1 ~-[~ ~- . . .  ~ z  = r (4.1) 

He re  l is  the num ber  of l ines in Class  A, qi and fli a r e  the i r  impu l se s  and f requencies ,  k and ~ a r e  
the impulse  and the f requency of the spec t ra l  function on the lef t -hand side of the equation. In accordance  
with # 2, the impu l ses  and the f requencies  of Class  B lines a r e  independent. I t  follows, then, that the i m -  
pulses  and the f requencies  of the dashed hines m a y  s e rve  as in tegra t ion va r i ab le s ,  but with the function 

6 ~ q ~ - - k  6 ~ i - - e  (4.2) 
i~ l  

included in the integrand.  

We will now analyze the case  k -~ ~. In the in tegrat ion with r e spec t  to impu l ses  and f requencies  of 
Class  B lines one need cons ider  only the region where  the va r i ab l e s  a r e  bounded. In the in tegrat ion with 
r e s p e c t  to qi, fli (i = l ,  2 , . . . ,  1), however,  this  is  not p e r m i s s i b l e  with function (4.2) under  the in tegra l  sign. 

Let  us cons ider  a region of in tegra t ion where  a graph can be spli t  into two p a r t s  connected through 
lines with smal l  impu l ses  and f requencies .  One can always spli t  the graph into two p a r t s  in such a way 
that  p a r t  2 will not contain l ines whose impu l ses  a r e  s imul taneously  smal l .  We now add up all the graphs  
with the s ame  such pa r t  2, with the s ame  number  and direct ion of connecting hines, but with a different  
p a r t  1 s t ruc tu re .  The re su l t  of this  summat ion  is  shown in Fig. 7. 

In accordance  with the conclusions of the p reced ing  pa ragraph ,  the genera l ized  v e r t i c e s  and r e sponse  
functions of pa r t  2 m a y  be rep laced  by  nuclear  v e r t i c e s  according to fo rmulas  (3.3) and (3.6). The 
functions contained in p a r t  2 can be expanded into s e r i e s  with r e spec t  to sma l l  impu l ses  and f requencies  
of the connecting l ines  and one need cons ider  the f i r s t  t e r m  only. After  Chat, p a r t  2 c ea se s  to depend on 
the impu l ses  and the f requencies  of the connecting l ines,  the in tegrat ion with r e spec t  to va r i ab l e s  on which 
p a r t s  1 and 2 depend can be p e r f o r m e d  separa te ly .  

Let  us designate by R (kl, r  kn, r Pl, ~l ,  �9 ", Pro, sin) the function which co r r e sponds  to pa r t  1 
(Fig. 7). The meaning of the a rguments  is  the s ame  as in (2.4), (2.5). In accordance  with Sec. 2, 

6re<Z) (kio)i) .  �9 �9 P (kno)n)> ----- R (k l (Ol . . .  kncoa; p icc l . . ,  praarn) 6] ( P i l l ) . . .  6f (pinata) (4.3) 

I t  will be a s s um ed  that  the in tegra l  of function R over  all  a rguments  within a l imi ted  range is  finite. 
According to (4.3), this  assumpt ion  is  equivalent  to the r equ i r emen t  that the quanti t ies  <[v (x, t)] n) be s table  
with r e spec t  to inf in i tes imal  va r ia t ions  of the ex te rna l  fo rce  

6f(p,x) = u  for IP [ ~ P o ,  [:r I ~ a o  
6 / ( p , a ) - - 0  for I P I ~ P o  or I ~ [ ~ a o  

Here  n is  some sma l l  constant  and P0, s0 a r e  ce r ta in  impu l se s  and f requencies  which sa t i s fy  the 
conditions P0 <<k, s 0 << vk 2. 

When m = 0 ,  the r equ i r emen t  that the in tegra l  of the function in p a r t  1 be bounded co r r e sponds  to the 
condition that  the quanti t ies  ([v (x,t)] n) be bounded. 

I t  i s  e a sy  to see  that in eve ry  case  an i n c r e a s e  in the number  of connecting l ines r e su l t s  in an in -  
c r e a s e d  numbe r  of l ines with a la rge  impulse  or  f requency in pa r t  2 and, the re fo re ,  the analyzed graph 
will be s m a l l e r  than some l o w e r - o r d e r  graph.  Consequently,  on the r ight -hand side of the equation one 
mus t  re ta in  only those  graphs  which do not contain Class  B l ines and in the in tegra t ions  one has  to con-  
s ide r  only the region where  the impulses  or  the f requenc ies  of all  l ines a re  la rge .  

We will e x p r e s s  function U (k, ~0) as 

U (k, ~) = V (k) r (k, e) (4.4) 

where  r (k, w) i s  n o r m a l i z e d  by the condition 

f r (k, o)) = 
(4.5) do) l 

Let us find a solution for  U (k) in the fo rm 

Y (k) = ~ (k) exp [--a (k / k~ ~] (4.6) 
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Here  a ,  T a r e  cer ta in  constants ,  r (k) i s  a function which v a r i e s  with k not f a s t e r  than as  a power .  
Function r (k, o~) signifies the f requency distr ibution of energy  in a ha rmonic  with the wave number  k. 

Let  ~ ,  (k) denote the c h a r a c t e r i s t i c  f requency above which r (k, ~) d e c r e a s e s  fast .  One could r eason  
that  r (k) i n c r e a s e s  with k not f a s t e r  than k 2. To the f i r s t  approximat ion,  which is  the concern  of this 
ana lys is ,  one only has  to de te rmine  the exponent T- 

Fo r  this purpose ,  i t  suff ices  to a s s u m e  that w,  (k) i n c r e a s e s  with k not f a s t e r  than as  some power .  

We subst i tute  (4.4), (4.6) into the equation for  U(k, w) and then in tegra te  i t s  both s ides  with r e s p e c t  
to r The second 6-function in (4.2) will then vanish  and any graph  on the r i gh t -hand  side of Eq. (Fig. 6) 
containing l Class  A Hnes will be wri t ten as  

l q~ 8 - - k  dql . . . . . . . . .  

. . . .  ql~z) d~ l . . ,  d~z (4.7) 

He re  �9 includes the functions S, r (q, fl), and the ve r t i ce s .  As ql ,"  . . ,  ql changes,  the in tegra l  with 
r e spec t  to ill ,- " , f l l  v a r i e s  not f a s t e r  than as  a power  and, the re fore ,  the region where  the exponential  
f ac to r  i s  max imum,  i .e . ,  where  

is  min imum adds the ma in  contribution to the kntegral with r e s p e c t  to ql . . . .  ' ql" I t  i s  e a sy  to ve r i fy  that  
this m i n i m u m  occur s  at  q l = q 2 = . . . = q l = k / 1  when ~/~ 1. When "y=l, on the other  hand, this  min imum oc-  
cu r s  at  pa ra I I e l  ql . . . .  , ql" 

We will now a s s u m e  the s pec t rum  of external  fo rces  ( I f  (k, ~0) 12) to be upper  bounded so that  within 
the range of l a rge  k one m a y  d i s r e g a r d  the f i r s t  t e r m  on the r ight -hand side of Eq. (Fig. 6). By v i r tue  of 
what has been said, Eq. (Fig. 6) for  , /~ 1 can be rewr i t t en  as 

N 
k ~ k v 

where  q~l(k) a r e  ce r ta in  functions which v a r y  with k not f a s t e r  than as a power  and N i s  an a r b i t r a r i l y l a r g e  
but finite in teger .  Multiplying both s ides of (4.7) by exp [a (k/k~ ~/] yields  

N 

I t  i s  e a sy  to see  that  this equation cannot be sa t i s f ied  when k --~ % i f  l d i f fers  f r o m  unity. There fo re ,  

U (k) ~ exp [ - - a k / k  ~ (4.10) 

5. The en t i re  reason ing  r em a i ns  val id  when Eq. (2.1) is  r ep laced  by the Navie r -S tokes  equation. In 
the spec t ra l  f o r m  this  equation i s  [8]: 

ico + vk ~) v~ (k, co) = ]~ (k, o)) -~ P~r (k) I v1 (q,a) v, (k --  q, c o ,  a) dqda ( -  

i klk j 

In the case  of a homogeneous i so t rop ic  turbulence  the spec t r a l  t enso r  is  defined by one s c a l a r  h m c -  
tion [6]: 

u~ (k, ~) = A~ (k) U (k, ~) 

Function U(k, r can be e x p r e s s e d  in the fo rm (4.4), (4.6). Since Pi j l  ( k ) ~ k ,  hence 

k 

will s e r v e  as the p a r a m e t e r  with r e s p e c t  to which the d i s r ega rded  graphs  a r e  indeed smal l  when e i ther  
k --~ ~ or ~0 --~ ~o. 
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The integrand in (4.7) will contain a factor which depends on the angle between vectors ql, �9 " ", ql" 

but its maximum will - as before - occur at qi=q2 = ... =ql=k/l within the accuracy of the power exponent. 

The validity of (4.10) can be verified by a comparison with experimental data on turbulence in apipe. 

There is, however, another area where it can be useful: in analyzing the final time period when turbulence 

degenerates. One assumes here usually {hat 

OU (k, t). ~ 2vk~  U (k, t) (5.1) 
Ot 

with nonlinear interactions completely disregarded. The solution to (5.1) is 

U (k, t) ---- C exp ( - - 2 v k  ~ (t - -  to)] 

At the beginning of the final period during which turbulence degenerates one may justify disregard- 
ing the nonlinear terms by the fact that the rate at which pulsations are  viscously damped will be much 
higher than the rate at which energy is transmitted nonlinearly across the spectrum. With time, however, 
the nonlinear interactions will become the only energy source for the harmonics with a sufficiently high 
wave number and, therefore,  they may not be disregarded. Formula (4.10) begins to become valid now, 
with the largest -scale  perturbations acting as the slow time-varying factor in front of the exponential term. 

The author extends his gratitude to A. Z. Patashinskii for having stated the problem and for the val- 
uable suggestions. 
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